Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit.

نویسندگان

  • D E Wood
  • W Stein
  • M P Nusbaum
چکیده

Specificity in the actions of different modulatory neurons is often attributed to their having distinct cotransmitter complements. We are assessing the validity of this hypothesis with the stomatogastric nervous system of the crab Cancer borealis. In this nervous system, the stomatogastric ganglion (STG) contains a multifunctional network that generates the gastric mill and pyloric rhythms. Two identified projection neurons [modulatory proctolin neuron (MPN) and modulatory commissural neuron 1 (MCN1)] that innervate the STG and modulate these rhythms contain GABA and the pentapeptide proctolin, but only MCN1 contains Cancer borealis tachykinin-related peptide (CabTRP Ia). Selective activation of each projection neuron elicits different rhythms from the STG. MPN elicits only a pyloric rhythm, whereas MCN1 elicits a distinct pyloric rhythm as well as a gastric mill rhythm. We tested the degree to which CabTRP Ia distinguishes the actions of MCN1 and MPN. To this end, we used the tachykinin receptor antagonist Spantide I to eliminate the actions of CabTRP Ia. With Spantide I present, MCN1 no longer elicited the gastric mill rhythm and the resulting pyloric rhythm was changed. Although this rhythm was more similar to the MPN-elicited pyloric rhythm, these rhythms remained different. Thus, CabTRP Ia partially confers the differences in rhythm generation resulting from MPN versus MCN1 activation. This result suggests that different projection neurons may use the same cotransmitters differently to elicit distinct pyloric rhythms. It also supports the hypothesis that different projection neurons use a combination of strategies, including using distinct cotransmitter complements, to elicit different outputs from the same neuronal network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network.

Distinct motor patterns are selected from a multifunctional neuronal network by activation of different modulatory projection neurons. Subsets of these projection neurons can contain the same neuromodulator(s), yet little is known about the relative influence of such neurons on network activity. We have addressed this issue in the stomatogastric nervous system of the crab Cancer borealis. Withi...

متن کامل

Regulating peptidergic modulation of rhythmically active neural circuits.

The ability of neuropeptides to modulate neural circuit activity is well established, but little is known regarding how the actions of neurally-released peptides are regulated. This issue is being studied in the isolated stomatogastric nervous system (STNS) of decapod crustaceans. The STNS is a small neural system that contains the rhythmically active gastric mill (chewing) and pyloric (filteri...

متن کامل

Distinct functions for cotransmitters mediating motor pattern selection.

Motor patterns are selected from multifunctional networks by selective activation of different projection neurons, many of which contain multiple transmitters. Little is known about how any individual projection neuron uses its cotransmitters to select a motor pattern. We address this issue by using the stomatogastric ganglion (STG) of the crab Cancer borealis, which contains a neuronal network...

متن کامل

Extracellular peptidase activity tunes motor pattern modulation.

We are examining how extracellular peptidase activity sculpts the peptidergic actions of modulatory projection neurons on rhythmically active neuronal circuits, using the pyloric circuit in the stomatogastric ganglion (STG) of the crab Cancer borealis. Neurally released peptides can diffuse long distances to bind to their receptors. Hence, different neurons releasing the same neuropeptide into ...

متن کامل

Differential activation of projection neurons by two sensory pathways contributes to motor pattern selection.

Sensorimotor integration is known to occur at the level of motor circuits as well as in upstream interneurons that regulate motor activity. Here we show, using the crab stomatogastric nervous system (STNS) as a model, that different sensory systems affect the same set of projection neurons. However, they have qualitatively different effects on their activities (excitation vs. inhibition), and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 23  شماره 

صفحات  -

تاریخ انتشار 2000